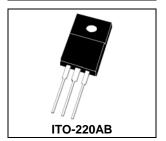


Switchmode Full Plastic Dual Schottky Barrier Power Rectifiers

Using the Schottky Barrier principle with a Refractory metal capable of high temperature operation metal. The properietary barrier technology allows for reliable operation up to 175° C junction temperature. Typical application are in switching Mode Power Supplies such as adaptators, DC/DC convertes, free- wheeling and polarity protection diodes.


Features

- *Low Forward Voltage.
- *Low Switching noise.
- *High Current Capacity
- * Guarantee Reverse Avalanche.
- * Guard-Ring for Stress Protection.
- *Low Power Loss & High efficiency.
- *****175° Operating Junction Temperature
- *Low Stored Charge Majority Carrier Conduction.
- *Plastic Material used Carries Underwriters Laboratory Flammability Classification 94V-O

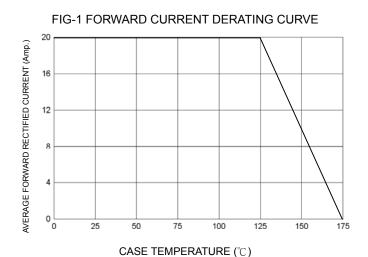
SCHOTTKY BARRIER RECTIFIERS

20 AMPERES 120 VOLTS

* In compliance with EU RoHs 2002/95/EC directives

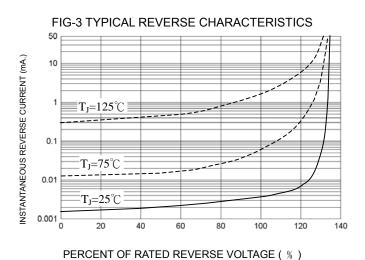
MAXIMUM RATINGS

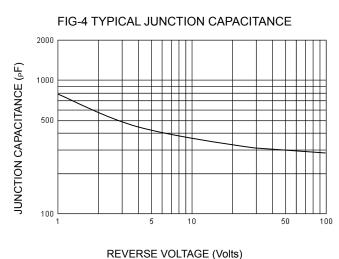
Characteristic	Symbol	MBRF20120C	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	120	V
RMS Reverse Voltage	$V_{R(RMS)}$	84	V
Average Rectifier Forward Current $(per diode)$ Total Device (Rated V_R), T_C =125 $^{\circ}$ C	I _{F(AV)}	10 20	Α
Peak Repetitive Forward Current (Rate V _R , Square Wave, 20kHz)	I _{FM}	20	Α
Non-Repetitive Peak Surge Current (Surge applied at rate load conditions halfware, single phase, 60Hz)	I _{FSM}	150	А
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-65 to +175	$^{\circ}\!\mathbb{C}$


THERMAL RESISTANCES

Typical Thermal Resistance junction to case R _{θ j-1}	4.0 °C/w
--	----------

ELECTRIAL CHARACTERISTICS


Characteristic	Symbol	MBRF20120C	Unit	
Maximum Instantaneous Forward Voltage (perdiode)				
$(I_F = 10 \text{ Amp T}_C = 25^{\circ}C)$	V_{F}	0.85	V	
(I _F =10 Amp T _C = 125℃)		0.78		
Maximum Instantaneous Reverse Current				
(Rated DC Voltage, T _C = 25°ℂ)	I_R	0.01	mA	
(Rated DC Voltage, T _C = 125°C)		10		


sapcon®

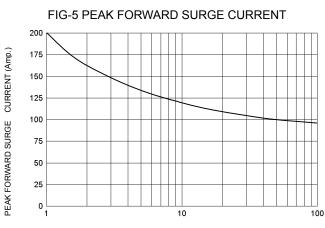


FIG-2 TYPICAL FORWARD CHARACTERISITICS NSTANTANEOUS FORWARD CURRENT (Amp.) 10 T_J=25°C ≡ $T_J=75^{\circ}C$ 0.1 <u></u> 0.0 1.0 1.2 0.2 1.4

FORWARD VOLTAGE (Volts)

NUMBER OF CYCLES AT 60 Hz